
Operating 
Systems

Process Scheduling  
and Switching 



Introduction

• An important aspect of 
multiprogramming is scheduling. 

The resources that  are scheduled are 
IO and processors. 
• The goal is to achieve

– High processor utilization
– High throughput

• number of processes completed per unit 
time

– Low response time
• time elapse from the submission of a 

request to the beginning of the response



Processor Scheduling

• Maximize CPU use, quickly switch processes onto CPU for 
time sharing.

• Process scheduler selects among available processes for 
next execution on CPU.

• Maintains scheduling queues of processes:
– Job queue – set of all processes in the system.
– Ready queue – set of all processes residing in main memory, 

ready and waiting to execute.
– Device queues – set of processes waiting for an I/O device.

• Processes migrate among the various queues.



Scheduling Criteria

• CPU utilisation: During heavy loads, the CPU is busy
almost 90% and in the lighter loads it is only active 
around 40%

• Throughput: the total number of processes that gets
completed in unit of time is called throughput.

• Turnaround time: the time span from submission of a 
process to the system until is completed

• Waiting Time: the time spent by a process in a different
queues

• Response Time: the time taken by a process in producing
its first response after submission.



Requirements of 
scheduling

• An ideal scheduling discipline
– is easy to implement
– is fair and protective
– provides performance bounds

• Each scheduling discipline makes a different trade-off 
among these requirements



Ease of 
implementation

• Scheduling discipline has to make a 
decision once every few microseconds!

• Should be implementable in a few 
instructions or hardware
– for hardware: critical constraint is 

VLSI space
– Complexity of enqueue + dequeue 

processes
• Work per packet should scale less than 

linearly with number of active 
connections



Types of Scheduling

• Preemptive 
• Non-Preemptive



Preemptive Scheduling

• When the CPU switches from one process to another
before its completion, then is called preemptive
scheduling

• Reasons why CPU leaves one process:
– Some higher priority process arrives in the system 
– An interrupt occurs in a process
– A child process comes into a parent process



Non-preemptive
Scheduling

• The CPU executes the process until it is terminated or 
until any input/output need arise.



Self-Quiz

– Define CPU Scheduling
– Define turnarounds time 



Types of Schedulers

1. Long-term scheduler (jobs scheduler) – selects 
which programs/processes should be brought into 
the ready queue.

2. Medium-term scheduler (emergency scheduler) –
selects which job/process should be swapped out if 
system is loaded.

3. Short-term scheduler (CPU scheduler) – selects 
which process should be executed next and 
allocates CPU.



Long-Term 
Scheduling

• Determines which programs are admitted to the 
system for processing.

• Controls the degree of multiprogramming.
• If more processes are admitted:

– less likely that all processes will be blocked –
better CPU usage.

– each process has less fraction of the CPU.
• Long-term scheduler strives for good process mix.



Short-Term Scheduling

• Determines which process is going to execute next 
(also called CPU scheduling).

• The short term scheduler is also known as the 
dispatcher (which is part of it).

• Is invoked on a event that may lead to choose 
another process for execution:
– clock interrupts
– I/O interrupts
– operating system calls and traps
– signals



Long/Short-Term 
Scheduling

Long-
term

Short-
term



Dispatcher (short-term 
scheduler)

• Is an OS program that moves the processor from one 
process to another.

• It prevents a single process from monopolizing 
processor time.

• It decides who goes next according to a scheduling 
algorithm.

• The CPU will always execute instructions from the 
dispatcher while switching from process A to process B.



Dispatcher

• Is a module of a OS that provides control of the CPU to 
the process which is selected by the short time scheduler.

• The dispatcher should be as fast as possible.
• The time consumed by the dispatcher is known as 

dispatch latency



Degree of 
multiprogramming.

• The degree of multiprogramming describes the 
maximum number of processes that a single-
processor system can accommodate efficiently. 

• The primary factor affecting the degree of 
multiprogramming is the amount of memory 
available to be allocated to executing processes.



Aspects of Schedulers

• Long-term scheduler is invoked very infrequently 
(seconds, minutes) ⇒ (may be slow).

• The long-term scheduler controls the degree of 
multiprogramming.

• Short-term scheduler is invoked very frequently 
(milliseconds) ⇒ (must be fast).

• Processes can be described as either:
– I/O-bound process – spends more time doing I/O than 

computations, many short CPU bursts.
– CPU-bound process – spends more time doing 

computations; few very long CPU bursts.



Medium-Term Scheduling

• So far, all processes have to be (at least partly) in 
main memory.

• Even with virtual memory, keeping too many 
processes in main memory will deteriorate the 
system’s performance.

• The OS may need to swap out some processes to 
disk, and then later swap them back in.

• Swapping decisions based on the need to manage 
multiprogramming.



Addition of Medium Term 
Scheduling

Long-
term

Short-
term

Medium-
term



SWAPPING



Schematic View of 
Swapping



Dynamics of Swapping

• A process can be swapped temporarily out of memory to a backing store, 
and then brought back into memory for 
continued execution

• Backing store – fast disk large enough to accommodate copies of all 
memory images for all users; must provide direct access to these memory 
images.

• Roll out, roll in – swapping variant used for priority-based scheduling 
algorithms; lower-priority process is swapped out so higher-priority 
process can be loaded and executed.

• Major part of swap time is transfer time; total transfer time is directly 
proportional to the amount of memory swapped.

• Modified versions of swapping are found on many systems (i.e., UNIX, 
Linux, and Windows).

• System maintains a ready queue of ready-to-run processes which have 
memory images on disk



Swapping Example



Support for Swapping

• The OS may need to suspend some processes, i.e., to 
swap them out to disk and then swap them back in. 

• We add 2 new states:
– Blocked Suspend: blocked processes which have 

been swapped out to disk.
– Ready Suspend: ready processes which have been 

swapped out to disk.



STATE TRANSITIONS



New state transitions

• Blocked –> Blocked Suspend
– When all processes are blocked, the OS will make room to 

bring a ready process in memory.

• Blocked Suspend –> Ready Suspend
– When the event for which it has been waiting occurs 

(state info is available to OS).

• Ready Suspend –> Ready
– when no more ready processes in main memory.

• Ready –> Ready Suspend (unlikely)
– When there are no blocked processes and must free 

memory for adequate performance.



Another view of the 3 
levels of scheduling



Classification of 
Scheduling Activity



A Seven-state Process 
Model



QUEUING



Queuing Diagram for 
Scheduling



Process Scheduling 
Queues

• Process queue – set of all processes in the system.
• Ready queue – set of processes residing in main 

memory, ready and waiting to execute.
• Device queues – set of processes waiting for 

an I/O device.
• Processes migrate among the various queues.



A Queuing Discipline

• When event n occurs, the corresponding process is 
moved into the ready queue



PROCESS CONTROL BLOCK



Ready Queue and various 
I/O Device Queues

Process state. The state may be new, ready, 
running, waiting, halted, and so on.
Program counter. The counter indicates the 
address of the next instruction to be executed for this process
CPU registers. They include accumulators, 
index registers,stack pointers, and general-purpose registers, 
plus any condition-code information.
CPU-scheduling information. This information includes a 
process priority, pointers to scheduling queues, and any other 
scheduling parameters.
Memory-management information. This 
information may include such information as the value of the 
base and registers, the page tables, or the segment tables, 
depending on the memory system used by the operating 
system.
Accounting information. This information 
includes the amount of CPU and real time used, time limits, 
account numbers, job or process numbers, 
I/O status information. This information includes the list of 
I/O devices allocated to the process, a list of open files, and so 
on.



SWITCHING



The CPU-I/O Cycle

• We observe that processes require alternate use of 
processor and I/O in a repetitive fashion

• Each cycle consist of a CPU burst (typically of 5 ms) 
followed by a (usually longer) I/O burst 

• A process terminates on a CPU burst
• CPU-bound processes have longer CPU bursts than 

I/O-bound processes 



The CPU-I/O Cycle

• CPU bursts vary 
from process to 
process, and 
from program 
to program, 
but an 
extensive study 
shows 
frequency 
patterns similar 
to that



The CPU-I/O Cycle

• Almost all processes 
alternate between two states 
in a continuing cycle :
– A CPU burst of performing 

calculations, and
– An I/O burst, waiting for 

data transfer in or out of 
the system.



CPU/IO Bursts

• Bursts of CPU usage alternate with periods of I/O wait
– a CPU-bound process
– an I/O bound process



When to Switch a Process?

• A process switch may occur whenever the OS has 
gained control of CPU. i.e., when:
– Supervisor Call

• explicit request by the program (example: file open) –
the process will probably be blocked.

– Trap
• an error resulted from the last instruction –

it may cause the process to be moved to terminated 
state.

– Interrupt
• the cause is external to the execution of the current 

instruction – control is transferred to Interrupt Handler.



Reasons for Process Switch



Context Switch

• When CPU switches to another process, the system 
must save the state of the old process and load the 
saved state for the new process.

• This is called context switch.
• Context of a process represented in the PCB.
• The time it takes is dependent on hardware support.
• Context-switch time is overhead; the system does no 

useful work while switching.



Process Switch



Context switch 
between processes (1)

A. Frank - P. Weisberg



Context switch between 
processes (2)



Steps in Context Switch

• Save context of processor including program counter 
and other registers.

• Update the PCB of the running process with its new 
state and other associate information.

• Move PCB to appropriate queue – ready, blocked,
• Select another process for execution.
• Update PCB of the selected process.
• Restore CPU context from that of the selected 

process.



Example of Context Switch

p1 p2 p3 kernel I/O
scheduler

device driver{

}

scheduler}

scheduler}
device driver{

scheduler}

I/O request

Time slice exceeded

Interrupt



Mode Switch

• It may happen that an interrupt does not produce a 
context switch.

• The control can just return to the interrupted program. 
• Then only the processor state information needs to be 

saved on stack.
• This is called mode switch (user to kernel mode when 

going into Interrupt Handler).
• Less overhead: no need to update the PCB like for context 

switch.



Scheduling 
Algorithms



Topics for discussion

• Various algorithms
– First-come, first-served
– Priority queues
– Round-robin



Scheduling in Linux

Three classes of threads for scheduling purposes:

Real-time FIFO
Real-time round robin
Timesharing (for all non real-time processes)



Optimization Criteria

• Max CPU utilization
• Max throughput
• Min turnaround time 
• Min waiting time 
• Min response time



FIFO



FIFO Queuing

• Simplest Algorithm, widely used.
• Scheduling is done using first-in first-out (FIFO) 

discipline
• All flows are fed into the same queue



FIFO Queuing (cont’d)

• First-In First-Out (FIFO) queuing
– First Arrival, First Transmission
– Completely dependent on arrival time
– No notion of priority or allocated buffers
– No space in queue, packet discarded
– Flows can interfere with each other; No isolation; 

malicious monopolization;



FCFS drawbacks

• Favors CPU-bound processes
– A CPU-bound process monopolizes the processor
– I/O-bound processes have to wait until completion of  

CPU-bound process 
• I/O-bound processes may have to wait even after their 

I/Os are completed (poor device utilization)
– Better  I/O device utilization could be achieved if  I/O 

bound processes had higher priority



First Come First Served 
(FCFS)

• Selection function: the process that has been 
waiting the longest in the ready queue (hence, 
FCFS)

• Decision mode: non-preemptive
– a process runs until it blocks for an I/O



First-Come, First-Served 
(FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2, P3  •
The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time:  (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300



FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
P2 , P3 , P1 .

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time:   (6 + 0 + 3)/3 = 3
• Much better than previous case.
• Convoy effect short process behind long process

P1P3P2

63 300



SHORTEST JOB FIRST



Shortest Job First 
(Shortest Process Next)

• Selection function: the process with the shortest expected 
CPU burst time
– I/O-bound processes will be selected first

• Decision mode: non-preemptive
• The required processing time, i.e., the CPU burst time,  

must be estimated for each process



Is SJF/SPN optimal?

• If the metric is turnaround time (response time), is SJF or FCFS better?
• For FCFS, resp_time=(3+9+13+18+20)/5 = ?

– Note that Rfcfs = 3+(3+6)+(3+6+4)+…. = ?
• For SJF, resp_time=(3+9+11+15+20)/5 = ?

– Note that Rfcfs = 3+(3+6)+(3+6+4)+…. = ?
• Which one is smaller? Is this always the case?



Is SJF/SPN optimal?

• Take each scheduling discipline, they both choose the same 
subset of jobs (first k jobs).

• At some point, each discipline chooses a different job (FCFS 
chooses k1 SJF chooses k2)

• Rfcfs=nR1+(n-1)R2+…+(n-k1)Rk1+….+(n-k2) Rk2+….+Rn

• Rsjf=nR1+(n-1)R2+…+(n-k2)Rk2+….+(n-k1) Rk1+….+Rn

• Which one is smaller? Rfcfs or Rsjf?



Example of Non-
Preemptive SJF

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

P1 P3 P2

73 160

P4

8 12



Example of Preemptive 
SJF

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

• Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16



SJF / SPN Critique

• Possibility of starvation for longer processes 
• Lack of preemption is not suitable in a time sharing 

environment
• SJF/SPN implicitly incorporates priorities

– Shortest jobs are given preferences
– CPU bound process have lower priority, but a process 

doing no I/O could still monopolize the CPU if it is the 
first to enter the system



Shortest job first: critique

• Possibility of starvation for longer processes as 
long as there is a steady supply of shorter 
processes

• Lack of preemption is not suited in a time sharing 
environment
– CPU bound process gets lower priority (as it should) 

but a process doing no I/O could still monopolize 
the CPU if he is the first one to enter the system

• SJF implicitly incorporates priorities: shortest 
jobs are given preferences

• The next (preemptive) algorithm penalizes  
directly longer jobs



PRIORITIES



Priority Scheduling

• A priority number (integer) is associated with each process
• The CPU is allocated to the process with the highest priority 

(smallest integer ≡ highest priority).
– Preemptive
– nonpreemptive

• SJF is a priority scheduling where priority is the predicted next 
CPU burst time.

• Problem ≡ Starvation – low priority processes may never 
execute.

• Solution ≡ Aging – as time progresses increase the priority of 
the process.



Priorities

• Implemented by having multiple ready queues to 
represent each level of priority

• Scheduler the process of a higher priority over one 
of lower priority

• Lower-priority may suffer starvation
• To alleviate starvation allow dynamic priorities

– The priority of a process  changes based on its 
age or execution history 



Priority Queuing

• A priority index is assigned to each packet upon arrival
• Packets transmitted in ascending order of priority index.

– Priority 0 through n-1
– Priority 0 is always serviced first

• Priority i is serviced only if 0 through i-1 are empty
• Highest priority has the 

– lowest delay, 
– highest throughput, 
– lowest loss

• Lower priority classes may be starved by higher priority 
• Preemptive and non-preemptive versions.



#  74

Priority Queuing

Transmission 
link

Packet discard
when full

High-priority
packets

Low-priority
packets

Packet discard
when full

When 
high-

priority
queue 
empty



ROUND-ROBIN



Round Robin: 
Architecture

Hardware requirement: 
Jump to next non-empty queue

Flow 1

Flow 3

Flow 2

Transmission 
link

Round robin

Round Robin: scan class queues serving one from 
each class that has a non-empty queue



Round Robin 
Scheduling

• Round Robin: scan class queues serving one from each 
class that has a non-empty queue



Round Robin (cont’d)

• Characteristics:
– Classify incoming traffic into flows (source-

destination pairs)
– Round-robin among flows

• Problems:
– Ignores packet length (GPS, Fair queuing)
– Inflexible allocation of weights (WRR,WFQ)

• Benefits:
– protection against heavy users (why?)



 Selection function: same as FCFS
 Decision mode: preemptive

 a process is allowed to run until the time slice period 
(quantum, typically from 10 to 100 ms) has expired

 a clock interrupt occurs and the running process is put 
on the ready queue 

Round-Robin



R-R Time Quantum

• Quantum must be substantially larger than the 
time required to handle the clock interrupt and 
dispatching 

• Quantum should be larger then the typical 
interaction 
– but not much larger, to avoid penalizing I/O 

bound processes



Round Robin (RR)

• Each process gets a small unit of CPU time (time 
quantum), usually 10-100 milliseconds.  
After this time has elapsed, the process is preempted 
and added to the end of the ready queue.

• If there are n processes in the ready queue and the 
time quantum is q, then each process gets 1/n of the 
CPU time in chunks of at most q time units at once.  
No process waits more than (n-1)q time units.

• Performance
– q large ⇒ FIFO
– q small ⇒ q must be large with respect to context 

switch, otherwise overhead is too high.



RR Time Quantum



Example of RR with Time 
Quantum = 20

Process Burst Time
P1 53
P2 17
P3 68
P4 24

• The Gantt chart is: 

• Typically, higher average turnaround than SJF, 
but better response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121134 154162



Example of RR with 
Time Quantum = 4

Process Burst Time
P1 24
P2 3
P3 3

• The Gantt chart is: 
P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30



Example of RR with 
Time Quantum = 4

Process Burst Time
P1 24
P2 3
P3 3

• Waiting Time:
– P1: (10-4) = 6
– P2: (4-0) = 4
– P3: (7-0) = 7

• Completion Time:
– P1: 30
– P2: 7
– P3: 10

• Average Waiting Time: (6 + 4 + 7)/3= 5.67
• Average Completion Time: (30+7+10)/3=15.67

P1 P2 P3 P1 P1 P1 P1 P1
0 4 7 10 14 18 22 26 30



Turnaround Time Varies 
With The Time Quantum



Quantum = 20

• Waiting Time:
– P1: (68-20)+(112-88) = 72
– P2: (20-0) = 20
– P3: (28-0)+(88-48)+(125-108) = 85
– P4: (48-0)+(108-68) = 88

• Completion Time:
– P1: 125
– P2: 28
– P3: 153
– P4: 112

• Average Waiting Time: (72+20+85+88)/4 = 66.25
• Average Completion Time: (125+28+153+112)/4 = 104.5

A process can finish before the time quantum expires, and release the CPU.



Weighted Round-Robin

• Weighted round-robin
– Different weight wi (per flow)
– Flow j can sends wj packets in a period.
– Period of length Σ wj

• Disadvantage
– Variable packet size.
– Fair only over time scales longer than a period time.

• If a connection has a small weight, or the number of connections 
is large, this may lead to long periods of unfairness.



DRR (Deficit RR) 
algorithm

• Choose a quantum of bits to serve from each connection in 
order. 

• For each HoL (Head of Line) packet,
– credit := credit + quantum
– if the packet size is ≤ credit; send and save excess,
– otherwise save entire credit.
– If no packet to send, reset counter (to remain fair)

• Each connection has a deficit counter (to store credits) 
with initial value zero. 

• Easier implementation than other fair policies
– WFQ



Deficit Round-Robin

• DRR can handle variable packet size

1500 

300

1200  

2000 1000

Second
Round

First
Round

Head of
Queue

A

B

C

0

Quantum size : 1000 byte 1st Round
A’s count : 1000
B’s count : 200 (served twice)
C’s count : 1000
2nd Round

A’s count : 500 (served)
B’s count : 0
C’s count : 800 (served)

500



DRR: performance

• Handles variable length packets fairly
• Backlogged sources share bandwidth equally
• Preferably, packet size < Quantum
• Simple to implement

– Similar to round robin



Determining Length of 
Next CPU Burst

• Can only estimate the length.
• Can be done by using the length of previous CPU 

bursts, using exponential averaging.

:Define  4.
10 ,  3.

burst CPU next the for value predicted   2.
burst CPU of lenght actual  1.

≤≤
=

=

+

αα
τ 1n

th
n nt

( ) .1 1 nnn t ταατ −+=+



Examples of 
Exponential Averaging

• α =0
– τn+1 = τn

– Recent history does not count.
• α =1

– τn+1 = tn

– Only the actual last CPU burst counts.
• If we expand the formula, we get:

τn+1 = α tn+(1 - α) α t n -1 + …
+(1 - α ) j α t n -j + …
+(1 - α )n+1 τ1

• Since both α and (1 - α) are less than or equal to 1, each 
successive term has less weight than its predecessor.



More on Exponential 
Averaging

1. S[n+1] next burst, S[n] current burst (predicted), T[n] 
actual,
– S[n+1] = α T[n] + (1-α) S[n]  ;    0 < α < 1
– more weight is put on recent instances whenever α > 

1/n
2. By expanding this eqn, we see that weights of past 

instances are decreasing exponentially
– S[n+1] = αT[n] + (1-α)αT[n-1] + ... (1-α)iαT[n-i] + 

... + (1-α)nS[1]
– predicted value of 1st instance S[1] is not calculated; 

usually set to 0 to give priority to new processes



Exponentially Decreasing 
Coefficients



Example

• Assume the following burst-time pattern for a 
process: 6, 4, 6, 4, 13,13, 13 and assume the initial 
guess is 10. Predict the next burst-time, α=0.8. 

Sn 10 6.8 4.56 5.71 4.34 11.27 12.49

Tn 6 4 6 4 13 13 13

Sn+1 6.8 4.56 5.71 4.34 11.27 12.49 12.89



Example

• Assume the following burst-time pattern for a 
process: 6, 4, 6, 4, 13,13, 13 and assume the 
initial guess is 10. Predict the next burst-time, 
α=0.2 and compare with ɑ=0.8; try it for ɑ=0.5, 
1.0

Sn 10 6.8 4.56 5.71 4.34 11.27 12.49

Tn 6 4 6 4 13 13 13

Sn+1 ɑ=0.8 6.8 4.56 5.71 4.34 11.27 12.49 12.89

Sn+1 ɑ=0.2 8.96 7.808 7.206 6.405 7.204 7.843 8.354


	Operating Systems
	Introduction
	Processor Scheduling
	Scheduling Criteria
	Requirements of scheduling
	Ease of implementation
	Types of Scheduling
	Preemptive Scheduling
	Non-preemptive Scheduling
	Self-Quiz�
	Types of Schedulers
	Long-Term Scheduling
	Short-Term Scheduling
	Long/Short-Term Scheduling
	Dispatcher (short-term scheduler)
	Dispatcher
	Degree of multiprogramming.
	Aspects of Schedulers
	Medium-Term Scheduling
	Addition of Medium Term Scheduling
	Swapping
	Schematic View of Swapping
	Dynamics of Swapping
	Swapping Example
	Support for Swapping
	State Transitions
	New state transitions
	Another view of the 3 levels of scheduling
	Classification of Scheduling Activity
	A Seven-state Process Model
	queuing
	Queuing Diagram for Scheduling
	Process Scheduling Queues
	A Queuing Discipline
	Process Control BLOCK
	Ready Queue and various I/O Device Queues
	switching
	The CPU-I/O Cycle
	The CPU-I/O Cycle
	The CPU-I/O Cycle
	CPU/IO Bursts
	When to Switch a Process?
	Reasons for Process Switch
	Context Switch
	Process Switch
	Context switch between processes (1)
	Context switch between processes (2)
	Steps in Context Switch
	Example of Context Switch
	Mode Switch
	Scheduling Algorithms
	Topics for discussion
	Slide Number 53
	Optimization Criteria
	FIFO
	FIFO Queuing
	FIFO Queuing (cont’d)
	FCFS drawbacks
	First Come First Served (FCFS)
	First-Come, First-Served (FCFS) Scheduling
	FCFS Scheduling (Cont.)
	SHORTEST JOB FIRST
	Shortest Job First (Shortest Process Next)
	Is SJF/SPN optimal?
	Is SJF/SPN optimal?
	Example of Non-Preemptive SJF
	Example of Preemptive SJF
	SJF / SPN Critique
	Shortest job first: critique
	priorities
	Priority Scheduling
	Priorities
	Priority Queuing
	Priority Queuing
	Round-robin
	Round Robin: Architecture
	Round Robin Scheduling
	Round Robin (cont’d)
	Round-Robin
	R-R Time Quantum
	Round Robin (RR)
	RR Time Quantum
	Example of RR with Time Quantum = 20
	Example of RR with Time Quantum = 4
	Example of RR with Time Quantum = 4
	Turnaround Time Varies With The Time Quantum
	Quantum = 20
	Weighted Round-Robin
	DRR (Deficit RR) algorithm
	Deficit Round-Robin
	DRR: performance
	Determining Length of Next CPU Burst
	Examples of Exponential Averaging
	More on Exponential Averaging
	Exponentially Decreasing Coefficients
	Example
	Example

